471 research outputs found

    The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies

    Get PDF
    The latest developments of planetary exploration missions devoted to minor bodies required new solutions to correctly visualize and analyse data acquired over irregularly shaped bodies. ASI Space Science Data Center (SSDC-ASI, formerly ASDC-ASI Science Data Center) worked on this task since early 2013, when started developing the web tool MATISSE (Multi-purpose Advanced Tool for the Instruments of the Solar System Exploration) mainly focused on the Rosetta/ESA space mission data. In order to visualize very high-resolution shape models, MATISSE uses a Python module (vtpMaker), which can also be launched as a stand-alone command-line software. MATISSE and vtpMaker are part of the SSDC contribution to the new challenges imposed by the "orbital exploration" of minor bodies: 1) MATISSE allows to search for specific observations inside datasets and then analyse them in parallel, providing high-level outputs; 2) the 3D capabilities of both tools are critical in inferring information otherwise difficult to retrieve for non-spherical targets and, as in the case for the GIADA instrument onboard Rosetta, to visualize data related to the coma. New tasks and features adding valuable capabilities to the minor bodies SSDC tools are planned for the near future thanks to new collaborations

    Characterization of Atmospheric Waves at the Upper Clouds in the Polar Region of Venus

    Get PDF
    Non solar-fixed waves at the cloud tops of the southern polar region of Venus are studied in the winds measured with 3.9 and 5.0 ÎŒm images taken by the instrument VIRTIS-M onboard Venus Express. Wavenumbers 1, 2 and 3 are detected, with wave amplitudes ranging from 3.6 to 8.0 m/s. The evolution of the phase has been studied in 16 orbits, finding in a subset of orbits wavenumbers 1 and 2 propagating in different directions (zonal wind), and a westward progression with a phase velocity of approximately 5.7 m/s for the wavenumber 1 in the meridional wind. Finally, a new set of analytical solutions to the atmospheric waves is obtained for the planet Venus, and these are used to characterize the found waves in terms of the horizontal wavelength and phase velocity

    Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem

    Get PDF
    In organic agriculture, soil fertility and productivity rely on biological processes carried out by soil microbes, which represent the key elements of agroecosystem functioning. Arbuscular mycorrhizal fungi (AMF), fundamental microorganisms for soil fertility, plant nutrition and health, may play an important role in organic agriculture by compensating for the reduced use of fertilizers and pesticides. Though, AMF activity and diversity following conversion from conventional to organic farming are poorly investigated. Here we studied AMF abundance, diversity and activity in short- and long-term organically and conventionally managed Mediterranean arable agroecosystems. Our results show that both AMF population activity, as assessed by the mycorrhizal inoculum potential (MIP) assay, the percentage of colonized root length of the field crop (maize) and glomalin-related soil protein (GRSP) content were higher in organically managed fields and increased with time since transition to organic farming. Here, we showed an increase of GRSP content in arable organic systems and a strong correlation with soil MIP values. The analysis of AMF spores showed differences among communities of the three microagroecosystems in terms of species richness and composition as suggested by a multivariate analysis. All our data indicate that AMF respond positively to the transition to organic farming by a progressive enhancement of their activity that seems independent from the species richness of the AMF communities. Our study contributes to the understanding of the effects of agricultural managements on AMF, which represent a promising tool for the implementation of sustainable agriculture

    Validation of the IPSL Venus GCM Thermal Structure with Venus Express Data

    Get PDF
    General circulation models (GCMs) are valuable instruments to understand the most peculiar features in the atmospheres of planets and the mechanisms behind their dynamics. Venus makes no exception and it has been extensively studied thanks to GCMs. Here we validate the current version of the Institut Pierre Simon Laplace (IPSL) Venus GCM, by means of a comparison between the modelled temperature field and that obtained from data by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) and the Venus Express Radio Science Experiment (VeRa) onboard Venus Express. The modelled thermal structure displays an overall good agreement with data, and the cold collar is successfully reproduced at latitudes higher than +/−55°, with an extent and a behavior close to the observed ones. Thermal tides developing in the model appear to be consistent in phase and amplitude with data: diurnal tide dominates at altitudes above 102 Pa pressure level and at high-latitudes, while semidiurnal tide dominates between 102 and 104 Pa, from low to mid-latitudes. The main difference revealed by our analysis is located poleward of 50°, where the model is affected by a second temperature inversion arising at 103 Pa. This second inversion, possibly related to the adopted aerosols distribution, is not observed in data

    Oxygen investigation in the Galileian satellites using AFOSC

    Get PDF
    Spectroscopy in the visible range of the Galilean satellites is a suitable way to investigate the surface properties of these objects. In recent years, several species, like O_2, O_3, and SO_2, have been detected on the surfaces of these satellites, which were thought to be completely covered only by water ice. The recent detection of the O_2 absorption bands in the Ganymede trailing face \citep{spencer_1995} led to laboratory experiments in order to better constraint the O_2 phases trapped in the water ice surface \citep{vidal_1997}. The same features were observed also on Europa and Callisto surfaces \citep{spencer_2002}, although a better investigation of their properties and their variability with time is still not fully addressed. We proposed ground-based observations with the AFOSC instrument on the 1.8-m telescope in Asiago, to investigate the Galilean satellites? surface properties, focusing both on the leading and trailing faces of the satellites. We used the Volume Phase Holographic grism covering the spectral range 400-1000 nm, with a spectral resolution of about 5000. In this work, we show results of the observations acquired in November 2014, focusing on the leading faces of the satellites. Data were treated using standard methods of data reduction. Further observations with the same setup, scheduled for February 2015 to observe the trailing face of the Galileian satellites, will complement the program. These observations are in preparation to the future science we will be able to perform with the MAJIS spectrometer on the European JUICE mission

    Spectral characterization of V-type asteroids outside the Vesta family

    Get PDF
    We present new near-infrared (NIR) reflectance spectra of 10 V-type candidate asteroids obtained at the 3.6 m Telescopio Nazionale Galileo covering the spectral range of 0.7-2.5 ÎŒm. The observed objects were selected from diverse data sets of putative V-type asteroids in order to characterize them, and hence better understand their relationship with (4) Vesta. We derive spectral parameters from NIR spectra to infer mineralogical information of the observed asteroids. All the spectra of the asteroids here reported show two prominent absorption features at 1 and 2 ÎŒm that are typical of V-class objects. The comparison of spectral parameters such as band centres and band separation, among our observations, Howardites, Eucrites, Diogenites meteorites, and (4) Vesta from Visible and Infrared Spectrometer (VIR) data on Dawn reveals that there is a strong correlation between these objects. From our analysis, four objects are compatible with Howardites, three are more similar to a eucritic-like composition, and two are compatible with Diogenites. Asteroid 26145, which is the only member of the Vesta dynamical family observed in 2012 March, is compatible with Vesta's surface, and shows a composition close to the Eucrites

    Spectroscopy of five V-type asteroids in the middle and outer main belt

    Get PDF
    The origin of basaltic asteroids found in the middle and outer main belt is an open question. These asteroids are not dynamically linked to the Vesta collisional family and can be the remnants of other large differentiated asteroids present in the early phases of the main belt but destroyed long ago. Spectroscopic investigation of some V-type asteroids in the middle-outer belt, classified as such by their SLOAN photometric colours (Ivezić et al.) and WISE albedos (Masiero et al.), has revealed that their spectra are more similar to other taxonomic classes, like -Q, R, S, or A (Jasmim et al. and Oszkiewicz et al.). Here, we report about the observation, in the near-infrared spectral range, of five V-type asteroids located beyond 2.5 au. These observations allowed us to infer their taxonomic classification. Two asteroids, (21238) Panarea (observed in a previous campaign but here included for comparison) and (105041) 2000 KO41, confirm their basaltic nature. For asteroids (10800) 1992 OM8 and (15898) Kharasterteam a taxonomic classification is more uncertain, being either Q- or S-type. Asteroid (14390) 1990 QP10 classification is difficult to ascribe to the known taxonomic classes, maybe due to the low-quality spectrum. Further observations are desirable for this asteroid

    Cometary science with CUBES

    Get PDF
    The proposed CUBES spectrograph for ESO's Very Large Telescope will be an exceptionally powerful instrument for the study of comets. The gas coma of a comet contains a large number of emission features in the near-UV range covered by CUBES (305-400 nm), which are diagnostic of the composition of the ices in its nucleus and the chemistry in the coma. Production rates and relative ratios between different species reveal how much ice is present and inform models of the conditions in the early solar system. In particular, CUBES will lead to advances in detection of water from very faint comets, revealing how much ice may be hidden in the main asteroid belt, and in measuring isotopic and molecular composition ratios in a much wider range of comets than currently possible, provide constraints on their formation temperatures. CUBES will also be sensitive to emissions from gaseous metals (e.g., FeI and NiI), which have recently been identified in comets and offer an entirely new area of investigation to understand these enigmatic objects.Comment: Accepted for publication in Experimental Astronom

    Dynamics investigation in the Venus upper atmosphere

    Get PDF
    The O_2 nightglow emissions in the infrared spectral range are important features to investigate dynamics at the mesospheric altitudes, in the planetary atmosphere. In this work, we analyzed the profiles obtained at limb by the VIRTIS spectrometer on board the Venus Express mission, acquired during the mission period from 2006-07-05 to 2008-08-15 to investigate possible gravity waves characteristics at the airglow altitudes. Indeed, several profiles present double peaked structures that can be interpreted as due to gravity waves. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O_2 nightglow emissions affected by gravity waves propagation, in order to support this thesis and derive the waves properties. We discuss results from 30 profiles showing double peaked structures, focusing on vertical wavelength and wave amplitude of the possible gravity waves. On average, the double peaked profiles are compatible with the effects of gravity waves with a vertical wavelength ranging between 7 and 16 km, and wave amplitude of 3-14%. A comparison with gravity waves properties in the Mars and Earth's atmospheres, using the same theory, is also proposed \citep{altieri_2014}. \ The research is supported by ASI (contract ASI-INAF I/050/10/0)
    • 

    corecore